Milvus
Overview
This page guides you through the process of setting up the Milvus destination connector.
There are three parts to this:
- Processing - split up individual records in chunks so they will fit the context window and decide which fields to use as context and which are supplementary metadata.
-
Embedding - convert the text into a vector
representation using a pre-trained model
(Currently, OpenAI's
text-embedding-ada-002
and Cohere'sembed-english-light-v2.0
are supported.) - Indexing - store the vectors in a vector database for similarity search
Prerequisites
To use the Milvus destination, you'll need:
- An account with API access for OpenAI or Cohere (depending on which embedding method you want to use)
- Either a running self-managed Milvus instance or a Zilliz account
You'll need the following information to configure the destination:
- Embedding service API Key - The API key for your OpenAI or Cohere account
- Milvus Endpoint URL - The URL of your Milvus instance
- Either Milvus API token or Milvus Instance Username and Password
- Milvus Collection name - The name of the collection to load data into
Features
Feature | Supported? | Notes |
---|---|---|
Full Refresh Sync | Yes | |
Incremental - Append Sync | Yes | |
Incremental - Append + Deduped | Yes | |
Partitions | No | |
Record-defined ID | No | Auto-id needs to be enabled |
Configuration
Processing
Each record will be split into text fields and meta fields as configured in the "Processing" section. All text fields are concatenated into a single string and then split into chunks of configured length. If specified, the metadata fields are stored as-is along with the embedded text chunks. Options around configuring the chunking process use the Langchain Python library.
When specifying text fields, you can access nested
fields in the record by using dot notation, e.g.
user.name
will access the
name
field in the
user
object. It's also possible to
use wildcards to access all fields in an object,
e.g. users.*.name
will access all
names
fields in all entries of the
users
array.
The chunk length is measured in tokens produced by
the tiktoken
library. The maximum is
8191 tokens, which is the maximum length supported
by the text-embedding-ada-002
model.
The stream name gets added as a metadata field
_ab_stream
to each document. If
available, the primary key of the record is used to
identify the document to avoid duplications when
updated versions of records are indexed. It is added
as the _ab_record_id
metadata field.
Embedding
The connector can use one of the following embedding methods:
-
OpenAI - using OpenAI API , the connector will produce embeddings using the
text-embedding-ada-002
model with 1536 dimensions. This integration will be constrained by the speed of the OpenAI embedding API. -
Cohere - using the Cohere API, the connector will produce embeddings using the
embed-english-light-v2.0
model with 1024 dimensions.
For testing purposes, it's also possible to use the Fake embeddings integration. It will generate random embeddings and is suitable to test a data pipeline without incurring embedding costs.
Indexing
If the specified collection doesn't exist, the
connector will create it for you with a primary key
field pk
and the configured vector
field matching the embedding configuration. Dynamic
fields will be enabled. The vector field will have
an L2 IVF_FLAT index with an
nlist
parameter of 1024.
If you want to change any of these settings, create a new collection in your Milvus instance yourself. Make sure that
- The primary key field is set to auto_id
- There is a vector field with the correct dimensionality (1536 for OpenAI, 1024 for Cohere) and a configured index
If the record contains a field with the same name as the primary key, it will be prefixed with an underscore so Milvus can control the primary key internally.
Setting up a collection
When using the Zilliz cloud, this can be done using
the UI - in this case only the collection name and
the vector dimensionality needs to be configured,
the vector field with index will be automatically
created under the name vector
. Using
the REST API, the following command will create the
index:
POST /v1/vector/collections/create
{
"collectionName": "my-collection",
"dimension": 1536,
"metricType": "L2",
"vectorField": "vector",
“primaryField”: “pk”
}
When using a self-hosted Milvus cluster, the collection needs to be created using the Milvus CLI or Python client. The following commands will create a collection set up for loading data via HeroPixel
from pymilvus import CollectionSchema, FieldSchema, DataType, connections, Collection
connections.connect() # connect to locally running Milvus instance without authentication
pk = FieldSchema(name="pk",dtype=DataType.INT64, is_primary=True, auto_id=True)
vector = FieldSchema(name="vector",dtype=DataType.FLOAT_VECTOR,dim=1536)
schema = CollectionSchema(fields=[pk, vector], enable_dynamic_field=True)
collection = Collection(name="test_collection", schema=schema)
collection.create_index(field_name="vector", index_params={ "metric_type":"L2", "index_type":"IVF_FLAT", "params":{"nlist":1024} })
Langchain integration
To initialize a langchain vector store based on the indexed data, use the following code:
embeddings = OpenAIEmbeddings(openai_api_key="my-key")
vector_store = Milvus(embeddings=embeddings, collection_name="my-collection", connection_args={"uri": "my-zilliz-endpoint", "token": "my-api-key"})
vector_store.fields.append("text")
# call vs.fields.append() for all fields you need from the metadata
vector_store.similarity_search("test")